of a large portion of the molecule. The least-squares plane $0.5030 X+0.4808 Y+0.7182 Z=5 \cdot 934$, calculated including the dinitrobenzoate group and the bridgehead carbon atoms (17 atoms out of 23) has only three atoms with deviation of $0.2 \AA$ from the plane, but no others more than $0 \cdot 1 \AA$ from the plane; the coefficients in the above equation are the direction cosines of the normal to the plane relative to \mathbf{a}, \mathbf{b} and \mathbf{c}^{*}.

The structure contains no unusually short intermolecular contact distances. Fig. 4 shows a stereoscopic drawing of a packing diagram. The direction of view is approximately along the y axis, with the x axis across the Figure. The box indicates the volume of one unit cell $(0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c)$; the sixteen molecules which extend into this unit cell are shown.

We are grateful for the support of this work by The Robert A. Welch Foundation, under Grant Number F-233.

References

Adman, E. \& Margulis, T. N. (1968). J. Amer. Chem. Soc. 90, 4517.
Almenningen, A., Bastiansen, O. \& Skancke, P. N. (1961). Acta Chem. Scand. 15, 711.

Bednowitz, A. (1966). Private communication.

Bonham, R. A. \& Bartell, L. S. (1959). J. Amer. Chem. Soc. 81, 3491.
Brown, G. M. \& Levy, H. A. (1965). Science, 141, 921.
Carter, O. L., McPhail, A. T. \& Sim, G. A. (1966). J. Chem. Soc. p. 822.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Evans, H. T. (1961). Acta Cryst. 14, 689.
Gvildys, J. (1965). Argonne National Laboratory Program B-149.
Johnson, C. K. (1965). Program ORTEP, revised. ORNL3794, Oak Ridge National Laboratory, Oak Ridge, Tenncsscc.
Karle, J. \& Karle, I. L. (1966). Acta Cryst. 21, 849.
Kartha, G. (1964). Private communication.
Lemoire, H. P. \& Livingston, R. L. (1952). J. Amer. Chem. Soc. 74, 5732.
Meinwald, J., Anderson, P. \& Tufariello, J. (1967). J. Amer. Chem. Soc. 88, 1301.
Skancke, P. N. (1960). Thesis, Oslo. Referenced by Wiberg \& Hess (1967).
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Tulinsky, A., Worthington, C. R. \& Pignataro, E. (1959). Acta Cryst. 12, 623.

Wiberg, K. B. \& Hess, B. A. Jr (1967). J. Amer. Chem. Soc. 89, 3015.
Wiberg, K. B. (1967). Private communication.
Williams, J. M. (1966). Argonne National Laboratory Program MET176X.

The Crystal Structure of Zinc Guanidinium Sulfate

By Carl N. Morimoto and E. C. Lingafelter
Department of Chemistry, University of Washington, Seattle, Washington 98105, U.S.A.

(Received 12 March 1969)

Abstract

The crystal structure of zinc guanidinium sulfate, $\mathrm{Zn}\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}\right]_{2}\left(\mathrm{SO}_{4}\right)_{2}$, has been determined by a threedimensional X-ray analysis. The crystals are tetragonal, space group $I \overline{4} 2 d$, with cell dimensions of $a=$ 9.515 and $c=14.351 \AA$. There are four formula units in the unit cell, with density calculated to be $1.929{\mathrm{~g} . \mathrm{cm}^{-3}}$ in agreement with the measured density ($1.93 \mathrm{~g} . \mathrm{cm}^{-3}$). The structure has been determined by Patterson and Fourier methods from 741 reflections collected by counter and refined by least-squares to a conventional R index of 0.017 . A network of zinc and sulfate ions constitutes the main feature of the structure; the sulfate ions are arranged tetrahedrally around the zinc ions with the $\mathrm{Zn}-\mathrm{O}$ distance being $1.94 \AA$. The sulfate ion, on a twofold axis, has one pair of oxygen atoms coordinated to zinc ions, resulting in an S-O bond distance of $1.49 \AA$, which is significantly longer than the S-O distance of $1.44 \AA$ for the second pair of sulfate oxygen atoms.

Introduction

The synthesis of a series of hexahydrated double salts between guanidinium sulfate and bivalent metal sulfates was reported by Canneri (1925). It was of interest to investigate the metal ion coordination in the bivalent metal guanidinium sulfate hexahydrates (M(II)GSH from here on), $\mathrm{M}(\mathrm{II})\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}\right]_{2}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, for comparison with the ammonium Tutton salts, M(II) $\left(\mathrm{NH}_{4}\right)_{2}$ $\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, which have been studied extensively (see

Montgomery, Chastain, Natt, Witkowska \& Lingafelter, 1967). In an attempt to prepare ZnGSH by room temperature evaporation of the aqueous solution of the mixed salts, crystals were obtained which appeared to be monoclinic as reported for M(II)GSH (Canneri, 1925). Although there was no evidence to indicate that these crystals were the desired complex, the structure determination by X-ray diffraction was undertaken. Later the crystal was identified as tetragonal and anhydrous instead of monoclinic and hexahydrate. Ef-
forts to prepare crystals of ZnGSH in this laboratory have been so far unsuccessful; however we have since then been able to prepare NiGSH and solve its structure (Morimoto \& Lingafelter, paper in preparation). This paper reports the structure determination of anhydrous zinc guanidinium sulfate.

Experimental

The crystals, later identified as zinc guanidinium sulfate, $\mathrm{Zn}\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}\right]_{2}\left(\mathrm{SO}_{4}\right)_{2}$, (analysis: $\mathrm{Zn}, 0 \cdot 1725$ found, 0.1731 calculated; $\mathrm{N}, 0.218$ found, 0.2225 calculated) were obtained by the method described by Canneri (1925) for the series of M(II)GSH. Stoichiometric ($1: 1$) proportions of $\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}\right]_{2} \mathrm{SO}_{4}$ and $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ were dissolved in a minimum amount of water and the resulting aqueous solution, left to evaporate at room temperature, produced colorless crystals with rather poorly developed faces. Identical crystals were obtained at several temperatures between 0 and $60^{\circ} \mathrm{C}$. Although the crystals were later recognized to be tetragonal, bounded by $\{101\}$, and often elongated along [111], the tetragonal symmetry was not apparent. One of the elongated crystals was mounted for rotation about the elongation direction, and a set of oscillation and equiinclination Weissenberg photographs were taken. These suggested that the axis of rotation was the c axis of a monoclinic crystal with space group Ic or $I 2 / c$ (i.e. $h k l$ absent for $h+k+l$ odd and $h 0 l$ absent for l odd) and cell dimensions $a=9 \cdot 84, b=13 \cdot 45, c=9 \cdot 84 \AA$, $\beta=93.7^{\circ}$. The Donnay-Takeda program (Stewart, 1964) for carrying out the Delaunay reduction indicated this cell to be the reduced monoclinic cell. (Later we found that this program, given the triclinic primitive cell, reduced it to a primitive cell with $a=9 \cdot 52, b=9 \cdot 84$, $c=9.52 \AA, \alpha=118.9, \beta=90.0$ and $\gamma=118.9^{\circ}$. We now recognize that the relationships, $a=c, \alpha=\gamma, \beta=\pi / 2$, and $2 b=a|\cos \alpha|$ suggest a body-centered tetragonal lattice.)

Another crystal, having dimensions of 0.41×0.20 $\times 0.28 \mathrm{~mm}$ in the directions normal to (101), (011), and ($01 \overline{1}$), respectively (tetragonal indices), was mounted in the same manner, but tilted so that the rotation axis was the monoclinic c^{*} axis, and used for data collection on a Picker automated four-angle diffractometer, with Mo-target tube ($\lambda=0.71069 \AA$ for $K \alpha$) set for a take-off angle of $3 \cdot 5^{\circ}$, and equipped with a scintillation counter and pulse-height discriminator. The radiation was filtered through 0.001 inch niobium foil. Bragg angles were measured for 18 reflections using the $+2 \theta,-2 \theta$ technique, and cell dimensions calculated by least squares. The final cell dimensions are:

Monoclinic	Tetragonal
$a=9 \cdot 838(2) \AA$	$a=9 \cdot 515(1) \AA$
$b=13 \cdot 454(2)$	$c=14.351(3)$
$c=9 \cdot 836(2)$	
$\beta=93 \cdot 68(2)^{\circ}$	
$V=1299.1 \AA^{3}$	$V=1299.7 \AA^{3}$
$Z=4$	$Z=4$
	$d_{\text {calc }}=1.929{\mathrm{~g} . \mathrm{cm}^{-3}}$

Transformation of the monoclinic cell axes into the tetragonal set is accomplished by

$$
\left(\begin{array}{c}
\mathbf{a}_{t} \\
\mathbf{b}_{t} \\
\mathbf{c}_{t}
\end{array}\right)=\left(\begin{array}{ccc}
1 & \frac{1}{2} & -\frac{1}{2} \\
1 & \frac{1}{2} \\
1 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} \\
-1 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{l}
\mathbf{a}_{m} \\
\mathbf{b}_{m} \\
\mathbf{c}_{m}
\end{array}\right) .
$$

Assuming the crystal to be monoclinic, intensity data were collected by the $\omega-2 \theta$ scan method (Furnas, 1957) with scan speed of two degrees per minute using Nb filtered Mo $K \alpha(\lambda=0.71069 \AA)$ radiation. A scan range for each reflection was calculated by the formula (Alexander \& Smith, 1964) scan range $=(0 \cdot 9+1 \cdot 0 \times \tan \theta)$ degrees. Background counts were obtained from the sum of two counts, taken at the beginning and end of

Table 1. Positional parameters ($\times 10^{4}$) and thermal parameters ($\times 10^{2}$) with estimated standard deviations in parentheses*
Anisotropic thermal parameters are of the form $\exp \left[\left(-\frac{1}{4} \sum_{i=1}^{3} \sum_{j=1}^{3} B_{i y} h_{i} h_{j} a_{i}{ }^{*} a_{j}{ }^{*}\right)\right]$.

	x / a	y / b	z / c	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Zn	0	0	0	119 (2)	119 (2)	143 (1)	0	0	0
S	-306 (1)	2500	1250	117 (2)	133 (2)	165 (2)	0	0	-30(2)
O(1)	647 (1)	1684 (1)	636 (1)	183 (5)	270 (6)	320 (6)	-44 (5)	78 (5)	-192 (5)
O(2)	-1168 (2)	1557 (2)	1788 (1)	445 (9)	329 (8)	448 (8)	-128(7)	250 (7)	-1 (7)
C	2500	52 (3)	3750	430 (14)	185 (9)	284 (10)	0	-100 (11)	0
N(1)	2500	-1333 (3)	3750	682 (20)	173 (9)	410 (14)	0	-218(16)	0
$\mathrm{N}(2)$	3150 (3)	734 (3)	4422 (2)	832 (18)	235 (9)	462 (12)	2 (10)	-353 (12)	-55 (8)

	B			
$\mathrm{H}(11)$	$293(4)$	$-175(4)$	$423(3)$	$58(9)$
$\mathrm{H}(21)$	$321(4)$	$159(5)$	$435(3)$	$74(13)$
$\mathrm{H}(22)$	$349(3)$	$25(3)$	$491(2)$	$54(7)$
	* Those parameters without standard deviations are fixed by symmetry.			

the scan range with the instrument stationary, and corrected for the time factor. A total of 1474 reflections were examined, out to $2 \theta=55^{\circ}$. Reflections with intensities (I) less than two times their empirical standard deviations $[\sigma(I)]$ were considered unobserved and assigned intensities of $I+2 \sigma(I)$. The intensities of the
observed reflections ranged from 1 to 11000 . A set of four standard reflections was remeasured periodically and was used to normalize the intensities to a common basis, correcting for any systematic change in the instrument or the crystal. The normalization factor was essentially constant with time, with an overall

Table 2. Observed and calculated structure factors (corrected for dispersion)
Columns are $h, 10 F_{o}, 10\left|F_{c}\right|$, and phase angle in millicycles. Unobserved reflections are marked * and those assumed affected by secondary extinction with an E.

variation of $1 \cdot 1 \%$ in intensity. The intensities were corrected for coincidence loss (6×10^{-8} count $^{-1}$) and for Lorentz and polarization factors but not for absorption ($\mu=23 \mathrm{~cm}^{-1}$). Empirical standard deviations of the intensities were calculated by the relationship $\sigma(I)^{2}=\sigma^{2}+\left(k C_{T}\right)^{2}$, where σ is the standard deviation in intensity due to counting statistics, C_{T} is total counts, and k is a stability constant, set at 0.01 for the present data from examination of the variance of the standard reflections.

Determination and refinement of the structure

All calculations were carried out on an IBM 7040/7094 DCS using programs adapted or developed at the University of Washington (Stewart, 1964). Scattering factors for $\mathrm{Zn}, \mathrm{S}, \mathrm{O}, \mathrm{C}$, and N atoms were taken from Doyle \& Turner (1968) and for H from Table II of Stewart, Davidson \& Simpson (1965). Dispersion corrections were not applied in the early refinements but were included for the final tetragonal refinement cycles.

The structure was solved on the basis of the monoclinic cell, using 1474 measured intensities. A threedimensional Patterson synthesis and Fourier syntheses were used to determine the structure in the space group $I c$. The refinement of the structure was carried out by the full-matrix least-squares method to a conventional R of 0.022 , where $R=\sum| | F_{0}\left|-\left|F_{c}\right|\right| \Sigma\left|F_{o}\right|$, excluding unobserved reflections and reflections which were considered affected by secondary extinction.

During the examination of the structure, it was noticed that the structure conformed almost exactly to the tetragonal space group $I \overline{4} 2 d$. This led us to examine the correlation coefficients. Correlation coefficients between parameters of atoms related by the tetragonal symmetry ranged from below 0.1 to 0.64 , so that the monoclinic matrix was at no time near to singularity. The original 1474 reflections were then reduced to a unique set of tetragonal reflections by taking weighted averages of intensities of symmetry-equivalent reflections using $1 / \sigma(I)^{2}$ as the weights, and the systematic
absences corresponding to $I \overline{4} 2 d$ were found. A substantial number of these pairs of equivalent reflections were noticed to differ by more than five times the standard deviation in intensities, and all of these large differences could be accounted for on the basis of anomalous dispersion effects. Therefore, 741 reflections (including 5 reflections which were considered unobserved), making up a complete octant of the limiting sphere to $2 \theta=55^{\circ}$, were considered and dispersion corrections were applied, with $\Delta f^{\prime}=0.3$ and 0.1 and $\Delta f^{\prime \prime}=1.5$ and 0.2 for zinc and sulfur respectively.

The refinement of the structure was reinitiated from the atom parameters (with isotropic temperature factors) of the monoclinic refinement, and was carried out by the full-matrix least-squares method. The function minimized was $\sum w\left(F_{o}-F_{c}\right)^{2}$, first with $w=1$ and then with $V w=1 / \sigma(F)$. Using individual isotropic temperature factors, refinement of the structure proceeded from $R=0.070$ to $R=0.058$ in one cycle. A plot of $\ln \left(F_{0} / F_{c}\right)$ vs. I_{c} (Housty \& Clastre, 1957) was made which disclosed 11 reflections possibly suffering from large secondary extinction effects, and these reflections were given zero weights in subsequent refinements. Anisotropic temperature factors of the form,

$$
\exp \left\{-\frac{1}{4} \sum_{i=1}^{3} \sum_{j=1}^{3} B_{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right\},
$$

were assigned, and two successive cycles of refinement reduced R to $0 \cdot 024$. Hydrogen atoms were located on a difference Fourier synthesis and were refined isotropically. Refinement was continued with all $w=1$ on all atoms to $R=0.019$ and was followed by three final cycles with $V w=1 / \sigma(F)$.
The final R values were $R=0.017$ and weighted $R=0.020$ with the standard deviation of an observation of unit weight, $\left\{\Sigma w\left(F_{o}-F_{c}\right)^{2} /(n-p)\right\}^{1 / 2}$, of $2 \cdot 70$, where n and p are the number of observed reflections and of parameters respectively. During the last cycle of refinement, the average and maximum parameter shifts were 0.105σ and 0.768σ respectively. The final atom parameters are listed in Table 1. A three-dimensional difference Fourier synthesis, calculated at the

Fig. 1. A stereoscopic pair of drawings of the unit cell viewed along the c axis. Dashed lines represent hydrogen bonds.
conclusion of the refinement, showed no region of density greater than $0.33 \mathrm{e} . \AA^{-3}$ or less than -0.38 e. \AA^{-3} (with $0 \cdot 16$ e. \AA^{-3} the estimated error in electron density). The final structure factors are given in Table 2.

Discussion

The structure consists of an interconnected network of zinc and sulfate ions, extending in three dimensions in a fashion resembling the diamond structure. Sulfate ions are arranged in tetrahedral coordination around the zinc ion, which is on a $\overline{4}$ axis, and form $\mathrm{Zn}-\mathrm{O}-\mathrm{S}-\mathrm{O}-$ Zn bridges between zinc ions. The guanidinium ions are not involved in metal coordination but form hydrogen bonds with the sulfate groups. A stereoscopic view of the arrangement of the ions in the unit cell is shown in Fig. 1.

Bond lengths and angles, calculated from the final atom parameters, are shown in Fig. 2 and Table 3. Root-mean-square components of the thermal displacements of the atoms, presented graphically in Fig. 2, are given in Table 4. Values for the bond lengths and
angles of the guanidinium groups are not significantly different from those reported for $\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}\right] \mathrm{Cl}$, in which $\mathrm{C}-\mathrm{N}$ distances are $1 \cdot 318(6), 1 \cdot 325(5)$ and $1 \cdot 325(6) \AA$, and $\mathrm{N}-\mathrm{C}-\mathrm{N}$ angles are $120 \cdot 8(8), 119 \cdot 3(8)$ and $119 \cdot 7(8)^{\circ}$ (Haas, Harris \& Mills, 1965). The zinc-oxygen bond length, 1.944 (1) \AA, is slightly shorter than the distances for tetrahedrally coordinated zinc reported by others: $1.986(30) \AA$ and $1.978(10) \AA$ in $\mathrm{Zn}_{2} \mathrm{Mo}_{3} \mathrm{O}_{8}$ (Ansell \& Katz, 1966); $1.962(7) \AA$ in bis(dipivaloylmethanido)zinc(II) (Cotton \& Wood, 1964); 1.94, 1.99, 1.99 and $2.06 \AA$ in $\mathrm{Na}_{2} \mathrm{Zn}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ (Amirov, Nikitin, Iliukhin \& Belov, 1967). The coordination tetrahedron of the zinc ion is significantly distorted. Two angles, $\mathrm{O}(1)-\mathrm{Zn}-$ $O\left(1^{\prime \prime \prime}\right)$ and $O\left(1^{\prime \prime}\right)-\mathrm{Zn}-\mathrm{O}\left(1^{\prime \prime \prime \prime}\right)$, are considerably larger than the regular tetrahedral angle, and the rest of the angles of the tetrahedron are much smaller. The cause of this distortion of the tetrahedron, a compression along the $\overline{4}$ symmetry axis, is not clear. The sulfate groups display two distinctly different $\mathrm{S}-\mathrm{O}$ distances depending upon metal ion coordination. The longer S-O bond length of $1 \cdot 485(1) \AA$ to the oxygen atoms involved in coordination to the zinc ion, compared

Fig.2. Bond lengths (\AA) and thermal motions of atoms in zinc guanidinium sulfate.
with that of 1.440 (2) \AA for the non-coordinated oxygen atoms, may be attributed to a smaller double-bond character of this S-O bond due to the zinc-oxygen interaction. The $\mathrm{O}(1)$ atoms are further characterized by an $\mathrm{O}(1)-\mathrm{S}-\mathrm{O}\left(1^{\prime}\right)$ angle of $104.6(1)^{\circ}$, which is noticeably smaller than the $109 \cdot 9^{\circ}-110 \cdot 8^{\circ}$ for the other bond angles of the sulfate ion. The oxygen-oxygen distances within the sulfate tetrahedron are presented in Table 3. The $\mathrm{O}(2)$ atoms, which are not involved in coordination, are hydrogen bonded to the guanidinium ions. Hydrogen bond distances are: $\mathrm{N}(1)-\mathrm{H}(11)-\mathrm{O}\left(2^{\prime \prime}\right)$, 3.090(2) \AA; and $\mathrm{N}(2)-(\mathrm{H} 22)-\mathrm{O}\left(2^{\prime \prime}\right), 2 \cdot 934(3) \AA$, where $O\left(2^{\prime \prime}\right)$ is generated from $O(2)$ by the transformation of $\left(\frac{1}{2}+x,-y, \frac{3}{4}-z\right)$. The hydrogen bondings, which are represented by dashed lines in Fig. 1, create a helical arrangement of guanidinium and sulfate ions extending parallel to the c axis. $\mathrm{H}(21)$, which is not involved in any hydrogen bonding, has a higher temperature factor than the other hydrogen atoms as expected.

The guanidinium ion is planar due to the twofold symmetry along the $\mathrm{C}-\mathrm{N}(1)$ vector. The equation of the plane calculated for the CN_{3} group is

$$
0.8416 X-0.0000 Y-0.5402 Z=-0.9053
$$

where X, Y, Z are orthogonal Ångström space coordinates referred to $\mathbf{a}, \mathbf{b}, \mathbf{c}$. The distances of the hydrogen atoms from this plane are as follows; $\mathrm{H}(11), 0.026 \AA$; $\mathrm{H}(21),-0.106 \AA ; \mathrm{H}(22), 0.111 \AA$.

This work was supported, in part, by the National Science Foundation under grant GP-7866.

References

Alexander, L. E. \& Smith, G. S. (1964). Acta Cryst. 17, 1195.

Amirov, S. T., Nikitin, A. V., Iliukhin, V. V. \& Belov, N. V. (1967). Doklady Akad. Nauk SSSR, 177, 92.

Table 3. Bond angles (in degrees) and some non-bonding distances (in \AA)

$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}\left(1^{\prime \prime}\right)$	102.74 (4)	$\mathrm{O}(1)-\mathrm{O}\left(1^{\prime \prime}\right)$	3.038 (2)
$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}\left(1^{\prime \prime \prime}\right)$	123.98 (9)	$\mathrm{O}(1)-\mathrm{O}\left(1^{\prime \prime \prime}\right)$	3.433 (3)
$\mathrm{Zn}-\mathrm{O}(1)-\mathrm{S}$	121.08 (8)		
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(2)$	109.9 (1)	$\mathrm{O}(1)-\mathrm{O}(2)$	$2 \cdot 394$ (2)
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}\left(2^{\prime}\right)$	$110 \cdot 9$ (1)	$\mathrm{O}(1)-\mathrm{O}\left(2^{\prime}\right)$	$2 \cdot 409$ (2)
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}\left(1^{\prime}\right)$	104.6 (1)	$\mathrm{O}(1)-\mathrm{O}\left(1^{\prime}\right)$	$2 \cdot 349$ (3)
$\mathrm{O}(2)-\mathrm{S}-\mathrm{O}\left(2^{\prime}\right)$	$110 \cdot 5$ (2)	$\mathrm{O}(2)-\mathrm{O}\left(2^{\prime}\right)$	$2 \cdot 366$ (4)
$\mathrm{N}(1)-\mathrm{C}-\mathrm{N}(2)$	$119 \cdot 5$ (2)		
$\mathrm{N}(2)-\mathrm{C}-\mathrm{N}(2)$	$121 \cdot 0$ (3)		
$\mathrm{C}-\mathrm{N}(1)-\mathrm{H}(11)$	117 (3)		
$\mathrm{H}(11)-\mathrm{N}(1)-\mathrm{H}\left(11^{\prime}\right)$	126 (5)		
$\mathrm{C}-\mathrm{N}(2)-\mathrm{H}(21)$	116 (3)		
$\mathrm{C}-\mathrm{N}(2)-\mathrm{H}(22)$	119 (2)		
$\mathrm{H}(21)-\mathrm{N}(2)-\mathrm{H}(22)$	126 (4)		

Table 4. R.m.s. components of thermal displacements of atoms $\alpha, \beta . \sigma$, are the angles between the crystal axes a, b, c, and principal axes of thermal ellipsoids.

Zn	Axis	R.m.s. displacement	α	Orientation of axis β	σ
	1	$0 \cdot 123$ (1) \AA	0°	90°	90°
	2	$0 \cdot 123$ (1)	90	0	90
S	3	$0 \cdot 134$ (1)	90	90	0
	1	$0 \cdot 121$ (1)	90	31 (1)	59 (1)
	2	$0 \cdot 122$ (1)	0	90	
	3	$0 \cdot 153$ (1)	90	59 (1)	31 (1)
O(1)	1	$0 \cdot 110$ (3)	75 (3)	47 (2)	47 (1)
	2	0.144 (2)	22 (2)	64 (3)	89 (2)
	3	0.255 (2)	75 (1)	50 (1)	43 (1)
O(2)	1	$0 \cdot 137$ (3)	47 (1)	62 (1)	56 (1)
	2	$0 \cdot 212$ (2)	80 (1)	32 (1)	60 (1)
	3	0.302 (3)	45 (1)	76 (1)	49 (1)
C	1	$0 \cdot 153$ (4)	90	0	90
	2	$0 \cdot 172$ (4)	63 (2)	90	27 (2)
	3	0.247 (4)	27 (2)	90	63 (2)
N(1)	1	$0 \cdot 148$ (4)	90	0	90
	2	$0 \cdot 191$ (4)	61 (1)	90	29 (1)
	3	0.319 (5)	29 (1)	90	61 (1)
N(2)		$0 \cdot 157$ (3)	72 (2)	41 (4)	55 (3)
	2	$0 \cdot 191$ (3)	66 (2)	49 (4)	51 (3)
	3	0.364 (4)	31 (1)	88 (1)	59 (1)

Ansell, G. B. \& Katz, L. (1966). Acta Cryst. 21, 482.
Canneri, G. (1925). Gazz. Chim. Ital. 55, 611.
Cotton, F. A. \& Wood, J. S. (1964). Inorg. Chem. 3, 245.
Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A 24, 390.
Furnas, T. C. (1957). Single Crystal Orienter Instruction Manual. Milwaukee: General Electric Company.
Haas, D. J., Harris, D. R. \& Mills, H. H. (1965). Acta Cryst. 19, 676.

Housty, J. \& Clastre, J. (1957). Acta Cryst. 10, 695.
Montgomery, H., Chastain, R. V., Natt, J. J., Witkowska, A. M. \& Lingafelter, E. C. (1967). Acta Cryst. 22, 775.

Stewart, J. M. (1964). Crystal Structure Calculations System X-ray-63, Univ. of Maryland TR-64-6.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Investigations of Dithienylglycollic Esters. II. The Crystal and Molecular Structure of Quinuclidinyl Di- α, α^{\prime}-thienylglycollate

By Anita Meyerhöffer
Department of Medical Physics, Karolinska Institutet, S-104 01 Stockholm and The Research Institute of National Defence, S-172 04 Sundbyberg, Sweden

(Received 9 April 1969)
Crystals of quinuclidinyl di- α, α^{\prime}-thienylglycollate are monoclinic, space group $P 2_{1}$ with two formula units in a cell having the dimensions $a=9.762, b=11.348, c=8.556 \AA, \beta=118.405^{\circ}$. The crystal structure was solved by a three-dimensional Patterson synthesis and refined by three-dimensional least-squares to a final R value of 0.042 . The two thiophene rings make an angle of 96° to each other. The glycollic bridge connecting the thiophene rings with the quinuclidine is almost planar. The quinuclidine skeleton is twisted 5° around its threefold axis. An intermolecular hydrogen bond is present between the hydroxyl hydrogen atom of the glycollic bridge and the nitrogen atom in the quinuclidine.

Introduction

The crystal structure of the anticholinergic drug, quinuclidinyl di- α, α^{\prime}-thienylglycollate,

$$
\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N},
$$

has been solved as part of our programme on the correlation between molecular configuration and pharmacological action of psychotomimetic compounds. The crystal structure of the closely related quinuclidinyl benzilate has been determined in the hydrobromide salt (Meyerhöffer \& Carlström, 1969). As one of the important factors in psychotomimetic drugs is probably the availability of a free electron pair on a nitrogen atom (Gabel \& Abood, 1965), it was regarded as important to solve the structure of a psychoactive base. All attempts to determine the structure of the base of the benzilate proved unsuccessful. For this reason the equally active thiophene compound was chosen as it could be analyzed directly by the 'heavy-atom' method. Another advantage was that the hydrogen positions could be determined, which was not possible in the case of the hydrobromide salt because of the strong interference of the heavy bromine atoms.

Experimental

The synthesis of quinuclidinyl di- α, α^{\prime}-thienylglycollate has been described by Nyberg, Östman \& Wallerberg
(1970). Large, colourless, optically perfect crystals were prepared through recrystallization in acetone during slow cooling. The unit-cell dimensions were determined from Weissenberg photographs and from diffractometer measurements. The density of single crystals was established by flotation in mixed solvents.

Crystal data

Quinuclidinyl di- α, α^{\prime}-thienylglycollate, $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}_{2}$ F. W. 349-47

$$
\begin{aligned}
& a=9.762 \pm 0.005 \AA \\
& b=11.348 \pm 0.005 \AA \\
& c=8.556 \pm 0.005 \AA \\
& \beta=118.405^{\circ} \pm 0.010^{\circ} \\
& V=833.72 \AA^{3} \\
& D_{m} 1.393 \pm 0.005 \text { g.cm }-3 \\
& D_{x}(Z=2) 1.392 \pm 0.002 \mathrm{g.cm}^{-3}
\end{aligned}
$$

The only systematic absences were $0 k 0$ when k is odd. Since the molecule is asymmetric and the unit cell contains two molecules the space group can only be $P 2_{1}$.

Intensity data were collected with a Philips automatic single-crystal diffractometer (PAILRED) using monochromatic Mo $K \alpha$ radiation. The crystal, having the dimensions $0.42 \times 0.62 \times 0.41 \mathrm{~mm}$, was oriented about the b axis and 15 layers corresponding to the entire Cu sphere were recorded. There were 2171 independent reflexions of which 146 were too weak to be

